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Abstract. Increasing evidence highlights the disruptive effects of compound climate extremes on global crop yields under 

climate change. Existing studies predominantly rely on the whole growing-season scale and relative thresholds, and hamper 

the capture of crop physiological sensitivities and yield responses that vary critically across growth stages. Here, we analyzed 15 

the spatiotemporal variations, dominant drivers, and potential impacts on the yields of concurrent heat-drought and chilling-

rainy events for single- and late-rice in southern China from 1981 to 2018. Specifically, we carefully distinguished three 

sensitive growth stages of rice, and used growth-stage-specific physiological thresholds. Temporally, single-rice experienced 

a significant increase in concurrent heat-drought events, while late-rice experienced a modest rise in chilling-rainy events. 

Hotspots of concurrent heat-drought events in single-rice systems moved upstream in the Yangtze Basin during the growing 20 

season, and the concurrent chilling-rainy events of late-rice were widespread within the planting regions, with a higher 

incidence in certain areas. These spatial characteristics were primarily driven by spatial differences in phenology rather than 

the occurrence of extreme events. Path analysis identified heat stress as the primary driver of heat-drought impacts (particularly 

in jointing-booting and heading-flowering stages), whereas chilling and rainy stress exerted comparable effects for late-rice. 

Our assessment of compound event impacts and sensitivity to rice yield revealed significant growth-stage-specific differences, 25 

with comparable yield losses from both concurrent heat-drought and chilling-rainy events. Single-rice showed the highest 

sensitivity to heat-drought events during the grain filling stage, whereas the late-rice exhibited greater sensitivity during 

the heading-flowering stage. The historical yield impact diverged markedly across growth stages, with the largest having 

occurred in the grain filling stage, particularly for heat-drought events. Our study provided important information on compound 

agroclimatic extremes, in the context of southern China’s rice production system, and the results provide important information 30 

for risk management and adaptation strategies under climate change. 
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1 Introduction 

Compound climate extreme events, driven by the interaction of multiple drivers and/or hazards, often have more severe 

ecological and socioeconomic consequences than single events (Urban et al., 2018; Zscheischler et al., 2020). There is 

increasing concern regarding the future impacts of compound climate extreme events considering their projected increasing 35 

frequency and intensity (IPCC, 2022). Among the multiple potential impacts, agricultural production has received specific 

attention. The regional threats posed by these extreme events could further lead to global food security issues and the need to 

develop food system resilience (Chenu et al., 2017; Lobell and Gourdji, 2012; Trnka et al., 2014). 

Previous studies have identified increasing trends in compound agroclimatic extremes, mostly in maize and wheat. Globally, 

analyses using diverse metrics, including growing-season precipitation-temperature anomalies(He et al., 2022), growing-40 

season standardized anomalies of soil moisture and killing-degree-days (Lesk and Anderson, 2021), and Standardized 

Temperature Index (STI) with multiple drought indicators (i.e., scPDSI, SPI, and SPEI) (Feng et al., 2021), have consistently 

revealed intensified hot-dry extremes across major crops since 1950, with ∼2% annual expansion of maize/wheat areas 

exposed to such events. Regionally, China's rainfed maize and wheat systems showed similar increasing trends on compound 

hot-dry days (1980–2015) when assessed by percentiles of daily mean temperature and precipitation (Lu et al., 2018). However, 45 

analyses combining temperature indices (heating/freezing degree days) and drought indicators (SPI) or standardized drought-

heat indices have revealed limited temporal trends despite the widespread spatial coverage of compound events since 1990 (Li 

et al., 2022; Wang et al., 2018). 

The literature has also investigated the impact of compound agroclimatic extremes on yield, mostly focusing on compound 

heat and drought events (Lesk et al., 2021). A study on the impact on U.S. soybean yields showed that compound hot and dry 50 

summer conditions reduced yields by two standard deviations. This sensitivity is four and three times larger than the sensitivity 

to hot or dry conditions alone, respectively (Hamed et al., 2021). Another study examined the combined effects of temperature 

and precipitation on county-level corn and soybean yields in irrigated and rainfed crops in the United States. This shows that 

combined heat and drought events suppressed rainfed maize and soybean yields (Luan et al., 2021). In addition to concurrent 

events, the impact of consecutive-dry-and-wet (CDW) extremes on crop yield has also been discussed. Evidence have shown 55 

that the risk of yield loss caused by CDW extremes can be twice as high as that from individual wet and dry extremes (Chen 

and Wang, 2023). Several studies have been conducted to explain crop yield reduction caused by compound heat and drought 

events from the perspective of temperature–moisture couplings (Lesk et al., 2021). 

Despite the growing recognition of compound climate extremes as critical threats to global food security, critical knowledge 

gaps persist in quantifying their agricultural impacts. First, while concurrent heat-drought events in staple crops have been 60 

extensively documented (Rötter et al., 2018), concurrent chilling-rainy events, although equally destructive, remain 

understudied, particularly in monsoon-dominated agroecosystems (Chen and Wang, 2023). Second, for the analyses of 
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compound severity, there has been a preference for the use of relative thresholds (e.g., percentiles of indicators) rather than 

crop-specific physiological thresholds to define extremes. Nevertheless, the use of relative thresholds cannot reflect the crop’s 

biophysical sensitivity to climate extremes, which vary by growth stage and event type (Kern et al., 2018). For example, rice 65 

faces different chilling thresholds of ≤ 17 °C at the booting stage and ≤ 20 °C at the grain-filling stages (Zhang et al., 2014). 

Third, growing-season-scale analyses mask critical sub-seasonal dynamics: extremes during flowering stage disrupt pollen 

viability and fertilization, whereas grain-filling stages extremes impair sucrose transporters critical for yield formation (Sehgal 

et al., 2018; Xiong et al., 2016); however these mechanisms remain poorly integrated into impact assessments. Additionally, 

quantitative analyses of yield losses under compound extreme hobble risk projections are limited.  70 

Rice, as a critical staple crop for a large portion of the global population, deserves particular attention (Yu et al., 2024). Rice 

production in China includes single-rice in northeast China and in the Yangtze River Basin, and late-rice in southern parts of 

the country. The climate of these rice cropping systems varies substantially, from sub-tropical to warm temperate, and 

consequently the crop is exposed to a range of agroclimatic extremes. For single-rice, summer (July to September) is the 

highest temperature period in southern China and is prone to seasonal drought (Tan et al., 2020). At this time, single-rice in its 75 

jointing to flowering and maturity stage is vulnerable to the combined effects of heat and drought. From September to October 

each year, late-rice in its heading-flowering and grain filling stages is critically vulnerable to low temperatures, strong winds, 

and persistent rainy weather (Guo et al., 2020). These climate extremes compounded together are commonly referred to as 

“chilling-dew wind” and “continuous rain” events (Xie et al., 2016; Zhang et al., 2021). Climate change has driven more 

frequent and intensive extreme events for rice cultivation (He et al., 2022; Yu et al., 2024). The 2022 summer compound hot-80 

dry events in the Yangtze River Basin once induced considerable worry about the rice-based autumn grain production in 

southern China (Fu et al., 2024). Therefore, focusing on the compound climate extremes related to rice production in China 

could help add new wisdom about compound agroclimatic extremes to those reported about other staple crops.  

This study aims to explore the spatiotemporal variations of concurrent compound extremes (CCEs) for single- and late-rice in 

southern China during the period 1981−2018, identify their underlying drivers, and assess their yield impact. Here, concurrent 85 

events refer to cases in which multiple types of extremes occur in the same growth stage. Unlike previous studies, we carefully 

distinguished CCEs by specifying the growth-stage physiological thresholds. We divided the rice-growing season into three 

critical stages: the jointing-booting stage (#1), heading-flowering stage (#2), and grain filling stage (#3). We considered four 

types of climate extremes that could substantially affect rice yield: heat (H), drought (D), chilling (C) and rainy (R). 

Correspondingly, we considered concurrent heat-drought events for single-rice, and concurrent chilling-rainy events for late-90 

rice. Our main questions are as follows: (1) How did the concurrent heat-drought and chilling-rainy events change temporally 

and spatially for rice in southern China during 1981-2018? (2) How was the temporal change in the severity of compound 

events driven by that of individual events? (3) To what extent do these concurrent events cause yield losses? (4) How did the 

answers to the above question differ by the rice growth stage?  
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2 Materials and Methods 95 

2.1 Study area 

Our study area covers the major rice-growing areas in southern China (Fig. 1). Local rice-growing systems include typical 

late-rice in the southeast and single-season rice (hereafter “single-rice”) in the Yangtze River basin and southwestern China. 

Late-rice generally grows from July to November and is subjected to extremely low temperatures and continuous rain from 

September to October. Single-rice generally grows from June to November. Its heading-flowering stages overlap with the 100 

hottest season and are prone to drought owing to the hilly terrain of southern China (Tan et al., 2020). To best present the 

complicated temporal structure of climate extremes, both single- and late-rice were considered in our analyses.  

 

Figure 1. Raster samples of single-rice and late-rice growing areas. Yellow grids indicate areas where single-rice is grown 

and blue grids indicate areas where late-rice is grown.  105 

2.2 Data  

A gridded daily dataset containing daily mean temperature and precipitation was obtained from the CN05.1 dataset prepared 

by the Institute of Atmospheric Physics, Chinese Academy of Science (Wu and Gao, 2013). The CN05.1 is a gridded daily 

dataset based on interpolation from over 2400 observation stations in China, with spatial resolution of 0.25° latitude and 0.25° 

longitude. It is regarded as the best choice for gridded climate forcing data in mainland China and has been widely used and 110 
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tested in previous studies (Li et al., 2022; Zhu and Yang, 2020). The 0.25° gridded daily 0-10 cm soil moisture data were 

obtained from the VIC-CN05.1 surface hydrology dataset (Miao and Wang, 2020). The dataset was simulated by the latest 

variable infiltration capacity (VIC) model and driven by pure station-based atmospheric forcings and high-resolution soil 

parameters based on field surveys. The modeled 0-10 cm soil moisture anomalies were highly correlated with in situ 

measurements (438 stations) during 2003–2016, with a mean R = 0.80. 115 

Two versions of rice phenology dataset were used to derive gridded rice phenological dates. Rice phenological dates recorded 

by agrometeorological stations from 1981 to 2014 were obtained from the China Meteorological Administration (CMA, 

http://data.cma.cn). This dataset is considered the best quality crop phenology observation station dataset in China and has 

gained widespread usage (Chen et al., 2021; Liu et al., 2023; Zhang et al., 2022a). Each station meticulously documents the 

rice cropping type (single-rice or late-rice) and the corresponding dates for every phenological event during the rice-growing 120 

season following the specifications for agrometeorological observation—Rice (QX/T 468–2018). Rigorous checks and 

validation during the data preparation process resulted in the production of extremely accurate data on rice phenology, with an 

accuracy rate exceeding 95%. Records that exceeded twice the standard deviation were rejected to ensure the data quality 

(Zhao et al., 2016). Rice phenology data in 1-km grids covering period of 2000-2019 were obtained from the 

ChinaCropPhen1km dataset (Luo et al., 2020). This data were derived based on Global Land Surface Satellite (GLASS) leaf 125 

area index (LAI) products. This dataset is superior to the previous one due to its spatially gridded format, but does not offer 

information before 2000. Both datasets were later fused to derive annual phenological dates from all rice-growing grids.  

The annual spatial distribution data of single and late rice were obtained from a high-resolution distribution dataset of single-

rice (Shen et al., 2023) and late-rice (Pan et al., 2021). The dataset provided a 10-m gridded distribution of single rice for 21 

provinces in China and that of late rice for nine provinces in Southern China. The two datasets used a method that combined 130 

optical and synthetic aperture radar images based on the time-weighted dynamic time warping method. For single-rice, the 

data achieved an average overall accuracy of 85.23% across 21 provincial regions, based on 108,195 samples, with a mean R² 

value of 0.83 when compared to county-level statistical planting areas over three years. For late-rice, the identification accuracy 

reached 90.46% based on 145,210 survey samples. We took the data for 2020 as the southern China rice-growing area mask.  

Historical gridded rice yield data were obtained from the AsiaRiceYield4km dataset (Wu et al., 2023) covering 1995 to 2015. 135 

The AsiaRiceYield4km dataset was generated by integrating multisource predictors into machine learning models, using 

inverse probability weighting to select the optimal model. It achieved high accuracy for seasonal rice yield estimation, with R² 

value of 0.88 and 0.91for single and late-rice, and significantly outperformed existing models. Thus far, the dataset provides 

the longest time series covering all rice cultivation areas in China.  

Owing to the difference in the spatial resolution of the above datasets, we harmonized those data to one base grid for later 140 

analyses. We used 0.25°×0.25° grids of the CN05.1 dataset as the base. Rice-growing area masks for single rice and late rice 
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were then applied to the base grid map to mask valid rice-growing grids. As one single 0.25°×0.25° climate grid covered many 

10-m rice pixels, we kept climate grids with rice pixels ≥5% of the area of each climate grid. The final base map contained 

2262 0.25°×0.25° grids for single-rice and 1383 0.25°×0.25° grids for late-rice (Fig. A1). For each grid, rice phenological 

dates were interpolated from station-observed dates using the co-kriging method with Gaussian function, and the gridded 145 

phenology information from the ChinaCropPhen1km dataset as a covariate. Our interpolation effectively captured spatial 

variability characteristics and compensated for the sparse coverage of station observations in many areas. We also adjusted the 

resolution of AsiaRiceYield4km to the base grid using bilinear interpolation. 

2.3 Compound types and thresholds for concurrent events 

Three stages of rice growth that were most susceptible to extreme weather stress were considered in this study: the jointing-150 

booting stage (#1), the heading-flowering stage (#2) and the grain filling stage (#3). The jointing-booting stage refers to the 

period from jointing to the day before heading. The heading-flowering stage refers to the period from heading to flowering 

and generally lasts for 10 days. The grain filling stage refers to the period from the 11th day after heading to maturity. The 

exact dates of the different stages were obtained from phenological records for each year and station.  

We considered four types of climate extremes that could substantially affect rice yields: drought, heat, chilling and rainy. To 155 

determine the thresholds, we referred to national and provincial standards for each stress. Our preliminary analysis showed 

that strictly adhering to these official thresholds led to a small sample size for a valid statistical analysis. Consequently, after 

a thorough literature review, we relaxed the thresholds of duration but reserved those for temperature/moisture. Finally, we 

specified thresholds for each climate extreme by growth-stage (Table 1), which were applied to daily climate data to screen 

the historical occurrence of these events. 160 

Table 1 The thresholds of each type of extreme event.  

Rice type Growth stage 
Climate 

extremes 

Indicator & threshold: daily mean temperature (T/℃), 

daily total precipitation (PRE/mm), soil moisture (SM/%) 

Single-rice 

Jointing-booting (#1) 

Heading-flowering  (#2) 

Grain filling  (#3) 

Heat T ≥ 33 ℃ ≥ 1 successive day 

Drought SM ≤ 75 % ≥ 10 successive days 

Late-rice 

Heading-flowering (#2) 
Chilling T ≤ 20 ℃ ≥ 1 successive day 

Rainy P ≥ 25 mm ≥ 1 successive day 

Grain filling (#3) 
Chilling T ≤ 17 ℃ ≥ 1 successive day 

Rainy P ≥ 25 mm ≥ 1 successive day 

Note: The above thresholds are referenced from: <NY/T 2915-2016>, Identification and classification of heat injury of rice; 

<NY/T 3043-2016>, Code of practice for field investigations and classification of rice seasonal drought stressess in southern-
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China; <NY/T 2285-2012>, Technical specification of field investigations and the grading of chilling damage to rice and; 

<DB5101/T 125-2021>, Indica rice weather stress level-continuous rain. NY/T is the Agricultural Information Resource 165 

Classification and Coding Specification in China. DB5101/T is the Local Standard of Chengdu, Sichuan Province. Thresholds 

for duration were relaxed from original standards to ensure adequate samples for later analyses.  

For compound climate extremes, we exclusively considered the case in which two types of stress occurred in the same growth 

stage, that is, simultaneous exposure to heat and drought during the jointing-booting stage of single-rice. This structure 

followed the topological structures suggested by Zscheischler (Zscheischler et al., 2020) and is hereafter referred to as 170 

concurrent climate extremes (CCEs). Correspondingly, we have three CCEs for late rice, namely, concurrent heat-drought 

events in the jointing-booting stage (H1D1), heading-flowering stage (H2D2), and grain filling stage (H3D3). The same rule 

of naming was also applied to single rice, which has two CCEs: C2R2 and C3R3.  

2.4 Severity of individual and compound climate extremes  

Here, severity (Haqiqi et al., 2021) was used to measure the stress imposed by individual extreme event. It was defined as the 175 

cumulative deviation from the threshold value of each stress. Following the concept, heat stress (H) severity 𝑆𝐻,𝑔,𝑡 at a given 

growth stage (g) in a given year (t) that meets the condition can be computed by the cumulative deviation of mean daily 

temperature (T) above its threshold (𝑇𝑏𝑎𝑠𝑒) for all the days (𝑖) within this stage. We used 33°C as the base temperature (Table 

1) in Eq. (1).  

𝑆𝐻,𝑔,𝑡 = ∑ |𝑇𝑖  − 𝑇𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑇𝑖 ≥ 𝑇𝑏𝑎𝑠𝑒)      (1) 180 

Similarly, chilling stress severity 𝑆𝐶,𝑔,𝑡 can be computed by the cumulative deviation of daily mean temperature (T) below its 

threshold (𝑇𝑏𝑎𝑠𝑒), for which we used 20 °C for heading-flowering stage and 17 °C for grain filling stage for one or more 

consecutive days in Eq. (2). Drought stress severity 𝑆𝐷,𝑔,𝑡 can be computed by the cumulative deviation of soil moisture (𝑆𝑀𝑖) 

≤75 % (𝑆𝑀𝑏𝑎𝑠𝑒) for ten or more consecutive days in Eq. (3). Rainy stress severity 𝑆𝑅,𝑔,𝑡 can be computed by the cumulative 

deviation of daily total precipitation (PRE) ≥  25 mm (𝑃𝑅𝐸𝑏𝑎𝑠𝑒) for one or more consecutive days in Eq. (4). 185 

𝑆𝐶,𝑔,𝑡 = 𝑆𝑇 = ∑ |𝑇𝑖  − 𝑇𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑇𝑖 ≤ 𝑇𝑏𝑎𝑠𝑒)    (2) 

𝑆𝐷,𝑔,𝑡 = 𝑆𝑆𝑀 = ∑ |𝑆𝑀𝑖  − 𝑆𝑀𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑆𝑀𝑖 ≤ 𝑆𝑀𝑏𝑎𝑠𝑒)   (3) 

𝑆𝑅,𝑔,𝑡 = 𝑆𝑃𝑅𝐸 = ∑ |𝑃𝑅𝐸𝑖  − 𝑃𝑅𝐸𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑃𝑅𝐸𝑖 ≥ 𝑃𝑅𝐸𝑏𝑎𝑠𝑒)   (4) 

For each grid, severity of heat, drought, chilling, and rainy stress were computed by growth stage by using above equations.  
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To provide a metric for the severity of compound events, copulas were used to fit marginal distributions of CCEs specified in 190 

Table 1 to derive compound severity. Copulas have been widely used in modeling compound climate extremes by constructing 

bivariate models (Li et al., 2021; Tavakol et al., 2020). It provides distinct advantages for multivariate analysis, including the 

ability to separately model marginal distributions and joint dependence, a mathematically feasible formulation, and the 

flexibility to select various marginal distributions (Sadegh et al., 2018; Salvadori et al., 2016; Vandenberghe et al., 2010). 

Specifically, the dependence structure between univariate indices (temperature and precipitation) was modeled using copula 195 

theory to fit a joint distribution of these variables (Madadgar et al., 2016; Mazdiyasni et al., 2019). The copula 𝐶 for two 

random variables 𝑋 and 𝑌 can be represented as follows: 

𝑃(𝑋 ≤  𝑥, 𝑌 ≤  𝑦)  =  𝐶[𝐹(𝑋), 𝐺(𝑌)]  =  𝐶(𝑢, 𝑣)     (5) 

where 𝑢 =  𝐹(𝑋) and 𝑣 =  𝐺(𝑌) are marginal distributions of the random variables 𝑋 and 𝑌, respectively. 𝑋 and 𝑌 represent 

the univariate indices (severity) of climate extremes for the given growth stage in Table 2. For instance, the joint distribution 200 

of concurrent heat-drought event across stages #1 can be fitted by using the severity of heat stress 𝑆𝐻 for stage #1 of all grids 

and all years together with that of the drought stress 𝑆𝐷 of stage #1. After fitting the best Copulas, joint cumulative distribution 

functions for non-exceedance probabilities for all CCEs were derived. For each grid and each year, the two-dimensional 

severity could then be transformed into an exceedance probability by exceedance probability conversion. It was actually a 

probability conditioning on the occurrence of specific compound extremes. To reveal the total probability of specific events, 205 

we converted the conditional probability back to the total probability, by using 𝑃(𝐴)  =  𝑃(𝐴|𝐵)  ×  𝑃(𝐵):  

𝑃𝑆𝐻1𝑆𝐷1
 =  𝑃(𝑆𝐻1 ≥ 𝑥, 𝑆𝐷1 ≥ 𝑦|𝑥 > 0, 𝑦 > 0) ∙ 𝑃(𝑥 > 0, 𝑦 > 0) = [1 − 𝑢 − 𝑣 + 𝐶𝐻1𝐷1(𝑢, 𝑣)] ∙

𝑛(𝑥>0,𝑦>0)

𝑁
         (6) 

The total probability 𝑃𝑆𝐻1𝑆𝐷2
 is then the joint exceedance probability of both severities, and can be regarded as a measure of 

the severity of compound extremes, where larger absolute 𝑃  values denote more severe conditions. A more convenient 

expression of the 𝐶𝑆 (compound severity) is to express the total probability 𝑃 as a standardized z-score by using the inverse 210 

transformation: 

𝐶𝑆𝐻1𝐷1 = 𝜑−1[𝑃𝑆𝐻1𝑆𝐷1
]      (7) 

where 𝜑−1 is the inverse transformation function of the standard normal distribution. Larger 𝐶𝑆 values denote more severe 

conditions. 

To identify suitable models when fitting those copulas, we first conduct goodness-of-fit tests at a 0.05 significance level 215 

(Salvadori et al., 2016). The best-fitting admissible model is then determined using the Bayesian Information Criterion (BIC) 

(Ribeiro et al., 2020). Models that cannot be rejected, based on p-values at the 0.05 significance threshold, are considered for 
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final selection (Li et al., 2022; Sadegh et al., 2018). In this study, the Clayton copula was selected to construct the compound 

climate extremes. For the spatial distribution of severity, the average severity across all years with occurrence was used. 

2.5 Contribution of temporal changes of Individual stress to compound events  220 

We attempted to understand how the temporal changes in individual stress were attributed to compound climate extremes. 

Specifically, we attempted to determine how the changes in compound severity (CS) of a specific CCE are related to the 

corresponding heat/chilling stress severity and drought/rainy stress severity changes over time. Because there can be strong 

interactions between temperature and moisture, path analysis was conducted. A path analysis decomposes the interaction 

between the dependent and independent variables (correlation coefficients) into direct (direct path coefficients) and indirect 225 

(indirect path coefficients) based on a multiple linear regression, without requiring the variables to be independent of each 

other (Zhang et al., 2022b). It has been widely applied to estimate the magnitude and significance of hypothesized causal 

connections between dependent and independent variables when the effects of the variables are confounded (Zhang et al., 

2022b, c; Yan et al., 2022). 

We separated the system of correlations between the dependent variable and two corresponding independent variables to obtain 230 

the path coefficients. Taking single-rice as an example, the path coefficient of heat stress severity (𝑆𝐻) to compound severity 

(𝐶𝑆)  𝑅𝑆𝐻,𝐶𝑆, which was also the Pearson correlation coefficient between 𝑆𝐻 and 𝐶𝑆, could be decomposed into direct and 

indirect effects by: 

𝑅𝑆𝐻,𝐶𝑆 = 𝑃𝑆𝐻,𝐶𝑆 + 𝑟𝑆𝐻,𝑆𝐷
𝑃𝑆𝐷,𝐶𝑆                                                                  (8) 

where, 𝑃𝑆𝐻,𝐶𝑆  is the direct path coefficient of 𝑆𝐻  on 𝐶𝑆, and 𝑟𝑆𝐻,𝑆𝐷
 is the Pearson correlation coefficient between the two 235 

independent variables, 𝑆𝐻 and 𝑆𝐷. Thus, 𝑟𝑆𝐻,𝑆𝐷
𝑃𝑆𝐷,𝐶𝑆 is the indirect path coefficient of drought stress severity on 𝐶𝑆. 𝑃𝑆𝐻,𝐶𝑆 

and 𝑃𝑆𝐷,𝐶𝑆 are two standardized linear regression coefficients obtained by regressing 𝐶𝑆 on 𝑆𝐻 and 𝑆𝐷. An F-test is conducted 

to test the statistical significance of the results, and the results of the path analysis were statistically significant when the p-

value was < 0.05.  

Based on the direct and indirect path coefficients, and the independent variables’ relative effect on the dependent variable, the 240 

determination coefficient (DC) could be derived. The DC for each climate variable is 𝐷𝐶𝑖 = 𝑃𝑖
2, where 𝑖 = 𝑆𝐻 , 𝑆𝐷 , 𝑆𝐶  or 𝑆𝑅. 

For the contribution from the cooperative interaction between two climate variables, the co-determination coefficient is then 

𝐷𝐶𝑐𝑜 = 2𝑃𝑖𝑟𝑖𝑗𝑃𝑗 , where 𝑖, 𝑗 = 𝑆𝐻 , 𝑆𝐷 , 𝑆𝐶  or 𝑆𝑅 . 𝐷𝐶𝑐𝑜  can indicate the extent to which the interaction of two independent 

variables affected the compound extremes. The total coefficient of determination (𝐷𝐶𝑡𝑜𝑡𝑎𝑙) can be obtained by summing the 

direct coefficients of determination and the coefficients of co-determination of all independent variables, which was used to 245 

indicate the magnitude of the joint explanatory power of individual stress.  
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2.6 Yield Impact Assessment 

The yield impact of CCEs was evaluated using the relationship between the yield anomaly and its corresponding compound 

severities. Yield anomalies were computed following the methodology outlined by Wang (Holly Wang & Zhang, 2003), in 

which historical yield trends were fitted first and subtracted from the time series to obtain anomalies. Yield trends were 250 

derived by fitting a log-linear regression model. The ordinary least squares method was then applied to fit the model directly 

to the yield-time series of each grid, enabling us to derive the detrended values for subsequent analysis (Ye et al., 2015). 

Specifically, the yield 𝑌𝑡 at time 𝑡 was modeled as: 

log (𝑌𝑡) = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡       (9) 

The detrended yield 𝑌𝑑,𝑡 can be calculated as: 255 

𝑌𝑑,𝑡 = 𝑌𝑡 − 𝑌𝑡̂         (10) 

Where 𝑌𝑡̂ is the predicted value obtained from the linear regression. 

Standardization can be achieved by converting the detrended data into z-scores: 

𝑌𝐴𝑡 =
𝑌𝑑,𝑡−𝜇

𝜎
       (11) 

Where 𝑌𝐴𝑡  is the standardized yield anomaly. 𝜇 =
1

𝑛
∑ 𝑌𝑑,𝑡

𝑛
𝑖=1  is the mean of the detrended yield, 𝜎 = √

1

𝑛−1
∑ (𝑌𝑑,𝑡 − 𝜇)2𝑛

𝑖=1  260 

and 𝑛 − 1 is used instead of 𝑛 to provide an unbiased estimate of the population standard deviation. 

3 Results 

3.1 Temporal changes of compound climate extremes  

Using growth-stage-specific thresholds, we quantified compound severity (CS) for each concurrent event across three critical 

rice stages: jointing-booting (H1D1), heading-flowering (H2D2/C2R2), and grain filling (H3D3/C3R3). We aggregated the 265 

grid-level severity into the annual average CS to show the overall temporal changes in compound events (Fig. 2b and 2d). We 

also plotted the kernel density estimate (KDE) of the annual CS (Fig. 2a and 2c). Higher KDE values at specific time intervals 

denote clusters of events, whereas lower values suggest sporadic occurrence. For the concurrent heat-drought events of single-

rice, the annual CS (Fig. 2b) displayed an increasing trend with a rate of approximately 0.12 per decade, which was statistically 

significant. H1D1 events, which first appeared in 1981, exhibited clustered occurrences with abrupt KDE peaks around 2003 270 

and 2010. H2D2 events emerged after 1992 but showed sharp KDE increases after 2010, suggesting a shift toward higher 
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frequency in the recent decade. Unlike the first two events, H3D3 appeared the latest (1998), with a KDE peak between 2005 

and 2010, followed by a slow decline after 2010.   

Concurrent chilling-rainy events were frequent throughout the historical period (Fig. 2c and 2d). There was only a weak upward 

trend along the time series, which was not significant. The occurrence of concurrent chilling-rainy events for both stages was 275 

less frequent around 2005 (from 2003 to 2007) and peaked around 1981-2000, and 2017. 

 

Figure 2.  Absolute annual compound severity (b, d) and the kernel density estimate (KDE) (a, c) of concurrent 

compound events (CCEs) for single- and late-rice during the period of 1981−2018. *** indicates significant at the 0.001 

Significance level.  280 
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3.2 Spatial distribution of compound climate extremes  

We averaged the annual compound severity for each type of CCEs in each grid to map the spatial hotspots (Fig. 3). The patterns 

were clear and contrasting. The average compound severity for concurrent heat-drought events covered a limited growing area, 

whereas that for chilling-rainy events was widespread.  

Hotspots of high-compound severity grids for concurrent heat-drought events differed largely according to growth stage (Fig. 285 

3a-c). The hotspots shifted gradually from the coast (H1D1) to inland China (H3D3) with rice growth. H1D1 was mostly 

concentrated in the lower reaches of the Yangtze River (East China region), while H3D3 was concentrated in the eastern part 

of the Sichuan-Chongqing area. H2D2 showed a clustered occurrence in central Anhui, eastern Hunan, and eastern Sichuan. 

 

Figure 3. Spatial distribution of the concurrent heat-drought events of single-rice (a-c) and the concurrent chilling-290 

rainy events of late-rice (d, e) for the period of 1981−2018. The shading indicates the compound severity for each compound 

event.  

Unlike heat-drought events, concurrent chilling-rainy events were widespread within the planting regions, with a higher 

incidence in certain areas (Fig. 3d and 3e). Hotspots of C2R2 were mostly concentrated in the southern parts of the study area, 

hilly regions to the south of Hunan and Jiangxi, and eastern Guangxi. The hotspots moved northward in C3R3, reaching the 295 

northeastern part of the study area, occurring in Hubei, Anhui, Zhejiang, and hilly regions in southern Hunan province where 

the altitude is relatively high.  
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3.3 Effects of individual stress severity on concurrent climate extremes 

We took the path coefficient as the relative sensitivity of 𝐶𝑆 (compound severity) to 𝑆𝐻 and 𝑆𝐷 for single-rice, 𝑆𝐶  and 𝑆𝑅 for 

late-rice. For three types of the concurrent heat-drought events, the direct path coefficient for heat stress severity (𝑃𝑆𝐻,𝐶𝑆) and 300 

drought stress severity (𝑃𝑆𝐷,𝐶𝑆) were both positive (Fig. 4a), indicating that the changes in the severities of heat and drought 

stress both contributed to increasing the compound severity. The contribution of 𝑆𝐻 was much larger than 𝑆𝐷 in stage#1, but 

slightly smaller in stage#3. Considering that the distribution of spatial hotspots for concurrent heat-drought events varied 

markedly across three growth stages (Fig. 3a-3c), the pattern also suggests the regional difference of relative contribution. In 

the lower-reaches of the Yangtze River Basin, heat stress was a greater determinant of concurrent heat-drought events than the 305 

drought stress, while in the eastern Sichuan Basin, the influence of drought stress exceeded slightly the influence of heat stress. 

For single-rice, the total determination coefficient, 𝐷𝐶𝑡𝑜𝑡𝑎𝑙 , which indicates the total effect of the two independent variables 

on the dependent variable, was similar across concurrent heat-drought events (median around 0.9) (Fig. 4c). The single-factor 

determination coefficients (𝐷𝐶𝑆𝐻,𝐶𝑆 and 𝐷𝐶𝑆𝐷,𝐶𝑆) indicated that the severity of heat stress affected the change of concurrent 

climate extremes to a greater extent than the severity of drought stress in H1D1 and H2D2, with a similar pattern observed for 310 

the path coefficients (𝑃𝑆𝐻,𝐶𝑆 , 𝑃𝑆𝐷,𝐶𝑆 ). The median 𝐷𝐶𝑐𝑜  was around 0.3, which indicated that the two variables are not 

independent and positively correlated. It is worth noting that the median of 𝐷𝐶𝑐𝑜 is higher than the median of 𝐷𝐶𝑆𝐷,𝐶𝑆 in H1D1 

and H2D2, which may result from the dominant effect from heat stress on concurrent heat-drought events in jointing-booting 

stage (stage #1) and heading-flowering stage (stage #2).  

The pattern of the effects of chilling and rainy stress severity on concurrent chilling-rainy events for late-rice was very different 315 

to that of heat-drought events (Fig. 4b). Both chilling and rainy stress severity had a strong direct effect on the changes in 

climate extremes, with chilling having a slightly larger effect in C2R2 and rainy had a slightly larger effect on C3R3. This 

pattern was also supported by the DCs of individual variables (𝐷𝐶𝑆𝐶,𝐶𝑆 and 𝐷𝐶𝑆𝑅,𝐶𝑆) (Fig. 4d). 𝐷𝐶𝑐𝑜 was almost 0 for both 

growth stages (Fig. 4d), due to the very small indirect coefficient, indicating that there was little correlation between the two 

stresses in concurrent chilling-rainy events. That means the interactive effects of temperature and moisture had quite small 320 

influence on the changes observed in concurrent chilling-rainy events for late-rice.  
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Figure 4. Boxplot of the path analysis of climate factors on the duration of CCEs for the period of 1981−2018. F-test 

results that were statistically significant at the 0.01 significance level of were retained in the figure. 

3.4 Rice yield impact of compound events  325 

Our yield impact analyses found significantly different historical average yield losses and yield sensitivities across growth 

stages for both types of CCEs. For concurrent heat-drought events, the average yield loss was the highest in the grain filling 

stage (H3D3), which was slightly greater than one standard deviation (Fig. 5f). This phenomenon was determined by a 

combination of the actual compound severity of each event during the historical period, number of years, and size of the region 

of occurrence. 330 
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Figure 5. The compound severity of rice climate extremes versus standardized yield anomaly (a-e) and the bar plot of 

standardized yield anomaly (f) during the period of 1995−2015. The symbol * indicates that F-test results were significant 

at the 10% significance level.  

We also examined rice yield sensitivity to concurrent events using the scatter plot of the standardized yield anomaly versus 335 

compound severity (Fig. 5a-e). A positive correlation was observed between compound severity and yield reduction, which 

was significant for all event types and growth stages. For single-rice, yield was more sensitive in the grain filling stage (#3) to 

concurrent heat-drought events, with a linear regression coefficient of 0.29, significant at the 0.05 significance level (Fig. 5c). 

This indicated that in response to every one standard deviation increase in the compound severity, a single rice yield would 

drop by 0.29 standard deviation. The sensitivity was slightly smaller in the heading-flowering stage (Fig. 5b) and the smallest 340 

in the jointing-booting stage (Fig. 5a), but both were significant. For late-rice, yield was more sensitive in the heading-

flowering stage than in the grain filling stage, with a greater slope coefficient of 0.37 than 0.19, both of which were significant 

(Fig. 5d and 5e).  
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4 Discussion 

4.1 Divergent spatial distribution patterns yet increasing temporal trends of concurrent events for rice 345 

We revealed the spatiotemporal variation of concurrent compound extremes (CCEs) for single-and late-rice in southern China, 

using growth-stage-specific physiological thresholds for temperature and moisture (either soil moisture or precipitation). This 

approach minimizes uncertainties inherent in applying uniform thresholds across the entire growing season. For example, the 

spatial shifts in the hotspots of concurrent heat-drought events of single-rice would have not been identified if we conducted 

evaluations over the entire growing-season. For the chilling stress to late-rice, the different effects of extremes at the heading-350 

flowering and grain-filling stages would not have been distinguishable if only one single temperature threshold was used to 

screen the whole growing-season. The consideration of a growth-stage-specific type-threshold enabled us to distinguish the 

different spatial and temporal characteristics of CCEs in different stages for single-rice and late-rice.  

Temporally, we found a statistically significant increasing trend in the compound severity of concurrent heat-drought events, 

in southern China. The concurrent chilling-rainy events for late-rice had a weak increasing trend, which was insignificant. The 355 

result was consistent with the increasing frequency of concurrent heat-drought events reported in previous studies. For example, 

increasing trends for concurrent heat-drought events in the main crop production areas since 1980 have also been reported by 

He (He et al., 2022), Zhang (Zhang et al., 2022c) and Lu (Lu et al., 2018). For chilling-rainy events in late-rice, (Liu et al., 

2013) also reported that the frequency of chilling events in rice during the period 2001–2011 was higher than that in 1990–

2000. They suggested that despite the increase in mean climatic temperatures, the occurrence of chilling events in rice did not 360 

decrease, but instead showed a gradually increasing trend. This pattern was also consistent with our findings.   

Spatially, we found that concurrent heat-drought events occurred only in specific regions in each of the three growth stages of 

single-rice, and coincided with the occurrence of heat stress in each growth-stage (Fig. A1). These spatial differences could 

mainly be attributed to regional differences in rice phenology rather than regional high-temperature events. That said, high 

temperatures in July and August in southern China enacted the precondition for heat events, and the dates of the susceptible 365 

growth-stage eventually determined the final period of exposure to concurrent events. For example, the single-rice 

transplanting date was 30 days earlier (day of the year, DOY 174-198) in the upstream than in the lower Yangtze River basin 

(DOY 207-232). When the single-rice in Chongqing entered the grain-filling stage, rice in the middle and lower reaches of the 

Yangtze River just entered the jointing-booting stage. Consequently, concurrent heat-drought events had a higher frequency 

in the later growth-stage in the upstream than in the downstream.  370 

Similarly, the late-rice heading date was 20 days earlier in the northern part of study area (DOY 255 in Hubei, Hunan, Anhui 

and Zhejiang) than in the southern part (DOY 273 in Guangdong, Guangxi and Hainan). In October, the late-rice in the northern 

part was mostly in the grain filling stage, whereas in the southern region, due to later planting dates, it was mostly in the 
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heading-flowering stage. Consequently, southern late rice is more susceptible to the impact of chilly and rainy conditions 

caused by the southward movement of cold air from the north, which converges with warm and moist air currents in the south, 375 

leading to low-temperature and continuous rainy days. This finding further emphasized the importance of using growth-stage-

specific thresholds, which allowed the exact spatiotemporal overlap of climate extremes and susceptible growth stages to be 

captured.  

4.2 The predominance of individual stress in driving concurrent events varies across different growth stages 

Path analysis identified the relative contribution of individual stress to compound severity and found large differences by 380 

growth stage. For instance, individual heat stress had a larger direct effect than drought stress on H1D1 and H2D2 of single-

rice, but the result was not apparent in H3D3. For concurrent chilling-rainy events of late-rice, the effects of chilling and rainy 

stress were comparable, with a slightly larger effect of chilling in C2R2 and a larger effect of rainy in C3R3.  

Previous studies on the factors driving changes in climate extremes have reported divergent results. For example, Zhang (Zhang 

et al., 2022b) suggested that temperature is the dominant factor influencing compound drought and heatwave events. In contrast, 385 

Bevacqua (Bevacqua et al., 2022) speculated that precipitation trends are believed to determine the future occurrence of 

concurrent heat-drought events. This is because future local warming would be sufficiently large that future droughts would 

always coincide with moderate heat extremes, and consequently, the changes in drought frequency would become the 

modulating factor. Our findings revealed that drought stress exhibited widespread spatial coverage and higher severity, 

particularly in the middle-lower Yangtze River Basin, where concurrent heat-drought events mostly occurred, particularly 390 

during the jointing-booting (H1D1) and heading-flowering (H2D2) stages (Fig. A1d, e). The heat stress demonstrated spatially 

concentrated patterns with a limited spatial extent (Fig. A1a, b). This spatial dichotomy highlights the fact that heat stress 

emerges as the dominant driver of concurrent heat-drought events, where its localized intensification, superimposed on drought 

conditions, triggers compound cascading effects. However, heat stress in growth stage#3 in the Sichuan and Chongqing regions 

was slightly more severe than that in drought. (Fig. A1 c, f), thus, the heat in this region has a slightly higher impact on the 395 

occurrence events. 

The results of the path analysis showed a correlation between the heat stress and drought stress of the concurrent heat-drought 

event (Fig. 4c, 𝐷𝐶𝑐𝑜). Previous studies have shown that enhanced dry-hot dependence can lead to more frequent concurrent 

heat-drought events (Hao and Singh, 2020; Zscheischler and Seneviratne, 2017). The combination of these processes leads to 

a strong negative temperature-soil moisture correlation, which can be explained by two pathways: land-atmosphere feedbacks 400 

and weather-scale correspondence between clouds and incoming shortwave radiation. Specifically, soil moisture deficits 

caused by low precipitation can lead to reduced evaporative cooling, along with increased sensible heat fluxes and higher 

surface air temperatures. High-temperature anomalies accelerate evapotranspiration, which further depletes soil moisture (Liu 

et al., 2020; Miralles et al., 2019). In addition, low levels of cloudiness associated with low precipitation (and subsequent soil 

https://doi.org/10.5194/egusphere-2025-1393
Preprint. Discussion started: 4 April 2025
c© Author(s) 2025. CC BY 4.0 License.



18 

 

moisture deficits) tend to enhance incoming shortwave radiation, which leads to higher surface air temperatures (Berg et al., 405 

2015). For chilling-rainy events for late-rice, our results also indicated a weak individual chilling and rainy correlation (Fig. 

4d, 𝐷𝐶𝑐𝑜). However, compared with heat-drought events, the relationships behind chilling-rainy events have largely been 

ignored in previous studies, and the underlying mechanism requires further investigation (Trotsiuk et al., 2020).  

4.3 The sensitivity and impact of yield reduction to concurrent events differed by growth stages 

Our study evaluated the historical yield impact and yield sensitivity of concurrent climate extremes across different sensitive 410 

growth stages and found comparable yield losses from concurrent heat-drought and chilling-rainy events (Fig. 5a-e). Yield 

sensitivity also exhibited comparable values between heat-drought events (0.29 on average) and chilling-rainy events (0.19–

0.37). This comparable effect is due to the disruption of physiological processes, such as photosynthesis and nutrient uptake, 

while increasing pest and disease risks caused by chilling or excessive rainfall (Arshad et al., 2017; Fu et al., 2023; Jiang et 

al., 2010). Therefore, results add important evidence about the yield impact of compound chilling-rainy for rice, to those that 415 

have reported heat-drought events on crops such as maize and soybeans (Luan et al., 2021; Seneviratne et al., 2010).  

Our results also revealed significantly different historical yield impacts across growth stages, particularly for heat-drought 

events (Fig. 5f). These differences in historical yield reductions likely stem from the interplay between exposed regions, 

regional climate couplings, and local infrastructure. Variations in regional climatic conditions drive differential responses of 

rice yields to extreme events across geographical areas (Li and Tao, 2023). The concentration of H3D3 events in the Sichuan-420 

Chongqing hotspot was amplified by topography-driven vapor pressure deficit anomalies (Zhu et al., 2024), which intensified 

moisture stress and ultimately led to severe yield losses in this region. Additionally, the Sichuan-Chongqing region is a hilly 

area with difficulty in providing irrigation infrastructure (Ye et al., 2012), and crop cultivation here heavily relies on 

precipitation. Therefore, a lack of irrigation infrastructure can exacerbate yield losses under persistent hot and drought 

conditions(Hao et al., 2023). 425 

Rice sensitivity to compound events also differed substantially according to the growth stage. Specifically, single-rice showed 

the highest sensitivity to heat-drought events during the grain filling stage, followed by the heading-flowering and jointing-

booting stage. Late-rice exhibited greater sensitivity during the heading-flowering stage than during the grain filling stage. 

These growth-stage-specific patterns may be attributed to the physiological vulnerabilities of rice at different growth stages and 

the mechanisms by which climatic stressors exert their effects. Although experimental studies explicitly revealing the 430 

mechanisms of yield reduction under compound events remain limited, plausible explanations can be inferred from the 

physiological responses of rice to individual stressors. For instance, heat stress during the grain filling process inhibits the 

grain starch biosynthesis and shortens the grain filling duration, leading to reduced grain weight and yield (Cao et al., 2008; 

Tenorio et al., 2013). Drought negatively impacts photosynthetic rate and chlorophyll content, while drought occurring during 

the grain filling stage reduces the 1000-grain weight, ultimately leading to yield loss (Amin et al., 2022). Chilling stress during 435 

https://doi.org/10.5194/egusphere-2025-1393
Preprint. Discussion started: 4 April 2025
c© Author(s) 2025. CC BY 4.0 License.



19 

 

the heading-flowering stage impairs rice yield by inhibiting spikelet opening, inducing spikelet sterility, and potentially leading 

to spikelet abortion and incomplete panicle exertion (Arshad et al., 2017; Suh et al., 2010). Rainy stress exerts a physical 

disturbance on pollination, thereby reducing the number of filled grains per panicle. Additionally, the overcast conditions 

associated with rainy stress severely impair photosynthetic assimilation in rice (Luo et al., 2018; Proctor, 2023).  

4.4 Limitations 440 

Our study was limited by the length of the time-series of data. Agrometeorological station data were only available up to 2018, 

and recent years that had experienced the most pronounced warming (IPCC, 2021) were therefore not included in the analysis. 

In particular, the severe concurrent heat-drought event in southern China in 2022 had a substantial impact on rice production 

(Hao et al., 2023). The absence of above data might have led to underestimates of the temporal trend and yield impact. We 

focused on concurrent climate extremes only in this research. However, climate extremes can occur consecutively in different 445 

growth stages (Zscheischler et al., 2020). Several studies have discussed the yield impact of switches of dry-and-wet in 

different stages of rice growth (Chen and Wang, 2023). Due to limited sample size, other types of compound climate extremes 

(like consecutive climate extremes, where rice is impacted by one event at one growth-stage, and by another at a different 

growth-stage) were not discussed in this study, but requires future investigation, including its spatial temporal variation, 

possible physical compound mechanisms, and the underlying process of yield loss.  450 

5 Conclusions 

In this study, we investigated the spatiotemporal variation of concurrent compound extremes for single- and late-rice in 

southern China and their underlying climate drivers, by distinguishing growth-stage-specific event types and thresholds. 

Temporally, our results indicated a significant increasing trend of concurrent heat-drought events for single-rice and a slight 

increasing trend for concurrent chilling-rainy events for late-rice. Spatially, the hotspots of concurrent heat-drought events for 455 

single-rice shifted from the lower Yangtze River Basin to its upper stream, and were dominated by the spatial differences in 

phenology rather than the occurrence of extreme events. The concurrent chilling-rainy events of late-rice were widespread 

within the planting regions, with a higher incidence at higher altitudes and latitudes. Path analysis suggested that heat stress 

had a larger direct effect than drought on compound severity, particularly in H1D1 and H2D2. For concurrent chilling-rainy 

events of late-rice, the effects of chilling and rainy stress were comparable. The assessment of compound event impacts and 460 

sensitivity to rice yield revealed significant growth-stage-specific differences, with comparable yield losses from both 

concurrent heat-drought and chilling-rainy events. 

Recent studies have provided additional details regarding the impacts of compound events on other staple crops (Hamed et al., 

2021), or single climate extremes for rice (Fu et al., 2023). A straightforward extension of the present study was to project the 

future occurrence and severity of compound extremes for rice. It is also important to project future yield impacts of compound 465 
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extreme events for rice, for risk management and adaptation purposes. Such a projection requires quantitative vulnerability 

functions or growth model simulations of compound extreme events. To increase the capability of the models, controlled 

experiments and field observations are needed to improve our understanding of the imapcat of compound extremes on rice 

(Lesk et al., 2022). Consequently, our study provides critical insights into the comprehensive impacts of compound events on 

rice production and establishes a scientific foundation for developing targeted adaptation strategies. 470 
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Appendix A: Additional Figures 

 

Figure A1. Spatial distribution of single heat and drought extreme events of rice for the period of 1981-2018. Each 

subgraph represents the frequency of (a-c) heat events, (d-f) drought events. 475 
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